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Disclination-dislocation model for the kink 
bands in polymers and fibre composites 
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A disclination-dislocation model is proposed for the structure and movement of kink 
bands in oriented polymers and fibre composites, which describes bending and inter- 
molecular slip inside the bands. It is shown that the band structure consists of special 
disclination-dislocation defects: slipped kinks. The mechanism of kink-band movement, 
based on the generation of such defects at the band front, is considered. The self elastic 
energy of slipped kinks is calculated and analysed in detail. 

1. Introduction 
In recent years many experimental data have been 
obtain on kink-band formation in different mater- 
ials under plastic deformation. In crystals, kink 
bands arise under special conditions of loading 
only [1]; however, in oriented polymers and 
fibre composites they can be the dominant mode 
of plastic deformation. This behaviour results 
from the anisotropy of the plastic properties of 
the materials concerned. 

Many authors have investigated kink bands in 
oriented polyethylene [2-6] and other poly- 
mers, for example, in polypropylene [2, 7] and 
nylon [7, 8]. Kink bands have also been studied 
in composites reinforced with glass or carbon fibres 
[9-11] .  The kink bands are usually observed in 
materials under uniaxial compression [4-6,  8, 10], 
but in some cases their formation takes place 
under tension [5], shear deformation [2] and 
torsion [7]. From these works, it can be seen 
that, with respect to macroscopic plastic defor- 
mation, kink bands are equivalent to ordinary 
shear bands, but have a characteristic internal 
structure; where a change in orientation of the 
macromolecules of fibres takes place, the kink 
band is separated by plane boundaries (shown 
schematically in Fig. 1). 

Most authors, when discussing the results 
obtained, believe [4, 8] that this change in orien- 
tation of the macromolecules is accompanied by 
intermolecular slip and it has been proposed [8] 
that the kink-band evolution could be interpreted 
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in terms of dislocation motion. As in the case of 
crystals [1] it is supposed [12] that dislocation 
pairs of opposite sign appear inside the bands 
during the deformation process. These dislocations 
glide to the boundaries of the band forming rows 
of minimum stored elastic energy. The glide planes 
of dislocations are parallel to the macromolecular 
axes inside the band. We have been unable to find 
any attempt to provide a quantitative description 
of such a mechanism. Another approach, outlined 
in [13, 14], takes into consideration the bending 
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Ngure 1 Schematic representation of the kink band in a 
non-homogeneous material. (1) macromolecules or fibres 
having a diameter = 2c; (2) the plane boundary of the 
band; (3) wedge disclination dipole having strength co; 
(4) disclination quadmpole being a structural unit under 
the elementary act of band propagation. 
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of macromolecules, described in terms of wedge 
disclination-loop condensation. However, this des- 
cription [13] gives no explanation of the macro- 
scopic shear deformation connected with the kink 
bands. 

Therefore, there is no successive theory able to 
explain the nucleation and development of  kink 
bands in oriented polymers and fibre composites. 
In the present paper, a disclination-dislocation 
mechanism is proposed which takes into consider- 
ation the simultaneous chain or fibre bending and 
intermolecular slip in the band. It is shown that the 
inner structure of  the band can be represented by 
a model involving special disclinafion-dislocation 
defects termed by us "slipped kinks". The self 
elastic energy of the slipped kink is also evaluated 
in the framework of linear isotropic elasticity. 

2. Kink-band structure and mechanism of 
movement 

2.1. Wedge disclination description of kink 
bands 

The kink band is a zone where the material is 
tilted relative to the surrounding volume at a 
certain angle, co. In contrast, in crystal twins this 
angle is not unambiguously defined by the solid 
structure symmetry. The shear of material is 
realized along the plane boundaries of the band. 
The magnitude of shear is D = 4l tan (6o/2), where 
21 is the thickness of the band (see Fig. 1). In the 
case of  an infmite range of band plane boundaries 
being perpendicular to the vectorD, kink-band pro- 
pagation is equivalent to wedge partial-disclination 
dipole motion. This dipole is shown in Fig. 1. The 
mechanism of  movement of  such a dipole in 
crystals has been considered [15, 16] in detail: 
the band motion is dictated by dislocation struc- 
ture evolution. In turn, in polymers and com- 
posites such kink-band movement is determined 
by peculiarities of  internal structure, i.e. in 
polymers by macromolecular diameter and by 
forces of  intermolecular interaction and in com- 
posites by fibre diameter and strength, and by 
fibre spacing, as well as by properties of  mat r ix -  
fibre interlayer. Under these conditions the 
elementary act of  dipole (kink-band front) motion 
is its translation by a distance of one diameter of 
macromolecule or fibre. Therefore the kink band 
moves through the potential relief with a charac- 
teristic period. 

One can think that the process of  motion 
develops in the following manner. At first the 

disclination quadrupole is generated near the 
wedge disclination dipole at the front of the kink 
band. The one arm of the quadrupole is equal to 
the band thickness 2l, the other is equal to the 
diameter of  the macromolecule or fibre. Then the 
annihilation between the initial dipole and the 
pair of opposite-sign disclinations in quadrupole 
takes place (Fig. 1). This process is equivalent 
to the passing of the band front to the next well 
of the potential relief. However, the disctination 
dipole does not overcome the potential barrier at 
once, but ejects (as a dislocation) a double kink, 
which broadens along the dipole axes. 

2.2. "F in i te "  analogue of the disclination 
quadrupole 

To ascertain the structure of such disclination 
dipole ejection it is necessary to construct the 
quadrupole analogue having a finite length in 
the direction of the Frank vector to. For this 
purpose let us consider a specific transformation 
of an initial quadrupole, shown schematically in 
Fig. 2. Under this transformation two bi-axial 
disclination dipoles convert into mono-axial dis- 
clination dipoles of opposite signs and produce 
two dislocation dipoles. In such an interpretation, 
disclination dipoles model the macromolecular 
or fibre bending whereas dislocation dipoles 
permit consideration of the intermolecular slip 
or shift in the matrix-fibre boundary. Now one 
can close the ends of dislocation and disclination 
lines as shown in Fig. 3. Thus, the "finite" ana- 
logue of the quadrupole so obtained consists of 
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(a) (b) 
Figure 2 Transformation of disclinafion quadrupole into 
a disclination-dislocation defect by means of the displace- 
ment of  the initial axes of rotation. (a) The initial quad- 
rupole having arms 21 and 2c and angle of rotation, to. 
(b) Final state of the defect. Bi-axial disclination dipoles 
axe replaced by mono-axial ones and additional edge 
dislocations with Burgers vector b = 2c tan (w/2). The 
zones  are dashed where the wedges are inserted into the 
body  when diselinations are created. 
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Figure 3 Structure  of  slipped kinks in fibres of  (a) rectan- 
gular and (b) circular cross-sections. The case in (a) also 
corresponds to a kink covering several macromolecules 
in the direction of vector ta. 

two glide dislocation loops and two symmetrical 
wedge disclination loops of opposite signs. This 
arrangement forms a special defect termed by us 
a "slipped kink". It is important that this defect 
is not merely a composition of disclinations and 
dislocations but one new quantity, since the 
Burgers vector, b, of dislocation loops is unequi- 
vocally connected with the strength w of disclin- 
ation ones by relation b -- coc. 

During the formation of slipped kinks in front 
of the kink band, both the bending and slipping 
of macromolecules is effected. This behaviour is 
in qualitative agreement with experimental data. 
After slipped-kink broadening takes place along 
the whole length of the band boundary, the con- 
figuration becomes again equivalent to the consid- 
ered disclination quadrupole; this indicates that 
band propagation into the next potential well has 
taken place. Consequently, the double kinks of the 
disclination dipole formed during its movement 
can be modelled by slipped kinks covering a 
limited number of macromolecules or fibres 
(Fig. 4). 

2.3. Properties of slipped kinks in the kink 
bands 

In oriented polymers the kink-band nucleation 
can be described as follows: first a group of 
slipped kinks in several neighbouring macro- 
molecules forms and then the group boundary 
propagates by means of joining new slipped kinks. 
Accordingly, the disclination-dislocation struc- 
ture of kink bands contains slipped kinks in all 
the macromolecules within it, as shown in Fig. 5. 
The kinks in rows of macromolecules arranged in 
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Figure 4 The mechanism of kink-band front movement. 
VKB = the velocity of the band front; VSK = the velocity 
of slipped kink broadening. 

the direction of Frank vector ~ unite forming 
rectangular-shaped defects. 

Special defects are also necessary to describe 
the plastic deformation of composite materials 
having a plastic matrix and undeformable fibres. 
In the matrix the dipole motion can be effected 
in the usual way [16], but by virtue of compat- 
ibility conditions the special defects must form 
around the fibres. They are also the slipped kinks. 

Finally, some principal properties of slipped 
kinks are noted. The presence of symmetrical 
disclination loops points to the influence on 
slipped kink formation of non-uniform external 
and internal elastic fields. This can lead to the 
preferential nucleation of kink bands near the 
sources of such non-uniform fields. In turn, the 

F/gure 5 Disclination-dislocation structure of the kink- 
band. (1) Symmetrical disclination loops (or mono-axial 
dipoles); (2) dislocations with Burgers vector 2b; (3) 
dislocations with Burgers vector b. 
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dislocation part of the defect provides the shear 
required. The work done by the applied stress is 
also connected with dislocations and has the 
magnitude (when a single defect is created) of 

A = rxzb2S b, (1) 

where rx~ is the applied uniform shear stress, 2So 
denotes the total dislocation loop area and b is 
Burgers vector. 

Therefore, using the special defects, the so- 
called slipped kinks, makes it possible to give an 
adequate description of the structure and move- 
ment of kink bands in oriented polymers and 
fibre-composites. 

3. Strain energy of slipped kinks 
The kink-band motion is a process of energy 
barriers overcoming the applied stress, with the 
aid of thermal agitation. The barrier height is the 
most essential characteristic of this motion. There- 
fore, if the band movement is determined by the 
ejection of slipped kinks, one must know the self 
energy of such disclination-dislocation defects. 

3.1. Method of  energy  evaluat ion 
We shall calculate the strain energy of a slipped 
kink consisting of a rectangular disclination and 
dislocation loops (Fig. 3). Such a form of defect 
permits consideration of its asymmetry. Rectangu- 
lar defects are very useful for describing kink-band 
motion by means of the generation of slipped 
kinks of various lengths. Finally, such an approach 
permits the slipped-kink critical size to be obtained. 

One can be convinced that the energy of the 
slipped kink, W, can be written in a general form as 

W = 2W~ + wito + 2W~ + W~ + 4W~to, (2) 

where W s and W i are respectively the self and 
interaction energies of the disclination loops, 
W~ and W~ are the self and interaction energies 
of the glide dislocation loops and W~w is the 
interaction energy between dislocation and dis- 
clination loops. 

The interaction of slipped-kink components in 
the framework of linear isotropic elasticity will be 
described in the same way as has been done for 
disclination loops in polymers [13]. The self ener- 
gies of  the loops may be evaluated when the work 
necessary for loop plastic-distortion creation is 
calculated. The interaction energies are determined 
from calculating the additional work done to 
create one loop in the stress field of another. 

3.2. Elastic properties of rectangular wedge 
disclination loop 

The component (r~ of the stress tensor of a rectan- 
gular wedge disclination loop is responsible for 
self and interaction energies in the given formu- 
lation. The stress tensor of arbitrarily-shaped 
disclination loops (including rectangular-shaped 
ones) may be obtained using the following method, 
similar to that proposed for dislocation loops 
[17,18].  

Let a disclination loop having an area, S, and 
Frank vector, s lie in the plane z = 0. One can 
represent this loop in the form of a union of 
infmitesimal disclination loops dS0 with the same 
vector of rotation. Each loop dSo is equivalent 
to the symmetrical disclination loop (with the 
axis of rotation fl '  in the centre of the loop) and 
dislocation loop with Burgers vector b = fl • Ro, 
where Ro = Xoex + yoey is a vector being drawn 
from the application point of fl to the common 
centre of the disclination and dislocation loops. 
The pure inf'mitesimal disclination loops give no 
contribution to elastic fields [19]. Therefore, for 
stress tensor calculation we shall only take into 
consideration the stresses of infinitesimal disloca- 
tion loops akbm =big~m, whose representation 
may be found, for example, in [20]. Then, the 
following expression is obtained for stress tensor, 

n of an arbitrarily-shaped disclination loop O'krn, 

lying in the plane z = 0: 

( ~ ( x , y , z )  = I f  ejlt~21RotgJkna 
s (3) 
x [(x --Xo), (Y--yo) ,  z] dxodyo, 

where eit t are the Levi-Chivita tensor components; 
Einstein's rule of summarizing is used, and inte- 
gration is carried out over the area S. Hence, the 
expression for the o~ component of  the stress 
tensor of rectangular wedge disclination loop 
is obtained (the loop plane is z = 0 and its vector 
of rotation is ~ = ~ey ,  Fig. 3a): 

G~ [ l l n  R - - v  I 

vz2(2u s + 2xu 4 --z=u 3 -]- XZ 4)  

u3R(u 2 +z2 )  2 

z4v3(u + x) 
uR3(u 2 + z~)2 (4) 

xvR(z4 q_ z2V2 __ V2u2 __ 3z2u 2)] c-= a-y 

u3(z 2 + v2) 2 �9 [ 
+ 

I ul Vl 
a (-c-~c) ( -d-Y)  
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where R 2 = u 2 + v 2 -I- z 2, G is the shear modulus  

and v is Poisson's ratio. Substituting this com- 
ponent into the well-known integral expression for 
the self energy of a disclination loop [13], and after 
integration, the energy W~o, in the case of rectan- 
gular wedge loop in the following form, becomes 

Gr176 [ 2 4cd 
W~o - 7r-~_v)[C dlnro[d+x/(c2 + d 2 )  ] 

c 3 ro[c+~/(c 2 +d2)]  
- -  - -  I n  - -  

3 4cd 

2 
+ -- (5c 2 -- d 2 ) X/(c 2 + d 2) 

9 

_ 2--9 (5ca -- d 3 ) -  2c2d] , (5) 

where ro is the disclination line core radius. The 
same method can be applied for the calculation 
of the interaction energy, W~, between considered 
disclination loops. This energy will be equal to 

Wiw _ Gr ]2d(212 
7r(1--v) --c2) 

L 

2 1 l [ d + ( d  2 + l  )7](d 2 + l  2)-~ 
x In 

l [ d + ( c  2 + d  ~ +/2)  ~] 
2 1 2 [c+(~  2 + l  )~](d ~ +'~)~ 

- - - - c  a In 
3 l [ c + ( c  2 + d  2 + l  2)$] 

--2(c2 +12)~( - 7 c 2  +32129 c ic2121~l 2] 

2 I (__ 32 12 c2l 2 --2(d 2 + l  )~" c2 +2--d2 + - -  + 
9 9 d-Y-~+ / 2 ] 

2 ' (  9 2 d2 + 3212 + 2(c 2 + d 2 + I )-2 - - -  C 2 + -  
9 9 

c2/~ c212 '~ 64 ] 
c 2 + I  ~ q - B ( d  2 + l  2 ) ]+ -9 -  la " (6) 

In these formulae, 2c and 2d are the disclination 
loop sizes and 2l is the distance between two loops 
(see Fig. 3a). 

3.3. Elastic properties of a rectangular glide 
dislocation loop and its interaction 
with a disclination loop 

The remaining terms in Equation 2 can be deter- 
mined if the stress tensor of a dislocation line 
segment [21] is used. The interaction energy 
between the rectangular glide dislocation loops W~ 
and their self energies W~ are determined by the 
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b of the four dislocation segments of total stress axz 
each dislocation loop. Evaluating the work done 
in creating the plastic distortions connected 

b with dislocation loops under this stress axz we 
obtain the energies Wg and W~, as follows: 

_ Gb 2 [ 
Wg 7r(1--v) L (d2 +12)~ - - l - - d - - d  

d + (d 2 + l 2)~ 4d ] 
• In + d l n - -  

J l ro 

+Gb2~r [ (d2 +12)k - - l - - d - - I  

xlnl+(d2d+12)~+lln41]ro ," (7) 

�9 _ 2Gb2 [ 12 +2c2 2 ' 
W~ 7r(1 -- v) [2c -- x/(l 2 + c2 ) -  2(c 2 + d )~" 

12 + 2c2 2 d 2 ' 
+~-G--je~(c + +t~)-~ 

d + (e ~ + d ~)~ 
+ d l n  

c 

_ d ln d + (c2 + d 2 +12 )~ 
(c2 + t~)4 

+ 2 lln 
c 

_ i l n l + ( ~ 2  + d  ~ + e ) ~ + ~ _ ( ~ ,  + ~ r  
(~ + d 2)~ 

1 

where the core radius of the dislocation line, ro, 
will now be equal to the core radius of the dis- 
clination line, and b is the magnitude of the 
dislocation loop Burgers vector. 

The evaluation of the interaction energy, i Wbto, 
is based on the work of the dislocation loop 
stress abzz when the wedge disclination loop is 
created: 

i Gbo.) [cd d 2 C "~- (C2 +d2) �89  
Wbo~ - n ( 1 - - v ) [  + in , d  

[d + (~ + d ~)r 1 ro + cd In 
4cd 

d+(d 
+ cdin 

l 



2 1 d + ( c  2 + d  2 + l  )7 
- - o d i n  

2 1 
(c ~ + l )~ 

el 2 
- - ( c  2 + l 2)7 c 2 + l 2 

1 

c + (c 2 +12 )~ 
+ l 2 In 

l 

- - (d 2 + l  2 ) l n c + ( c  2 + d  2 + l  2)4 
(d 2 +12) �89 

d )4] + - - ( c  2 + + l  2 (9) c 2 + 12 ] 

3.4. Ana lys i s  o f  s l ipped k ink  self  energy 
Substituting the calculated energies into Equation 
2 and summarizing, allowing for b = cog gives 
the elastic energy, W, of the slipped kink. The 
full expression for W is not derived here, as it is 
extremely cumbersome. When d >>max {c, l} this 
energy becomes: 

/r(1Gc~ L [ C2 + I2 C2 +/2 J1 W - c 2 1 n ~ - 5 - - + 1 2 1 n ~  + c  2 

(10) 

which is equivalent to the wedge disclination 
quadrupole energy with an accuracy of c 2 . The 
appearance of this term is caused by the method 
of assigning the defect. 

If  the length of slipped kink along the z-axis is 
much greater than the other defect dimensions 
(l >>max {c, d}) then the following approximate 
expression can be used: 

Gco2c22l 2d(c 2 + d2) 4 
W - - -  In (1 l) 

f f  c r  o 

Equation 11 corresponds to the energy of the 
slipped kink having appeared at the single fibre 
or macromolecule, when this defect is elongated 
in tl~e direction of the fibre axis. In turn, if the 
size of the defect along the Frank vector is com- 
parable to its size along the z-axis and both these 
sizes are much greater than the defect size along 
the third axis (rain {d, l}>> c), then the energy of 
the slipped kink may be written as: 

4Gco2c 2 

7r(1 - v )  

4dl  
2 I 1 x (1 -- v)l In [l + (d 2 + l )-~ (2cro)7 

4l 2 2dl 
-- 2 ~ t-din 2 !  

3(d 2 + l )-~ c[d + (c 2 + d )2] 

+ v - - l -~  d +  v - -  l . (12) 

The given asymptotes are the best for analysis 
of the energy balance of kink-band motion. 

Equations 10 to 12 correspond to the cases 
when the slipped kink can be represented by a 
surface or linear defect. Under this condition 
two groups can be singled out from defect dimen- 
sions 2c, 2d and 2/: one is characterized by length 
h and the other one by length L (where L >> h). 
Here L is the characteristic size of the surface or 
the length of the line. Upon analysing Equations 
10 to 12 it is convincing that the slipped kink 
energy may be estimated as W~Go3Zh2L.  The 
form of the given dependence permits a com- 
parison of this energy with the energy of the 
dislocation line in a linear approximation W L 
Gb2L, where b is the Burgers vector of dislocation 
and L is its length. 

If coh is of the order of b, the energy behaviour 
of the slipped kinks is similar to that of a dislo- 
cation. This case is realized in polymers , where 
o3 ~ 1 [2-4]  and h is of the order o( the macro- 
molecular diameter. In fibre composites the 
condition o h  ~ b holds, since the fibre diameter 
is much larger than the interatomic distance. This 
leads to conditions favourable for the formation 
of cracks in the tilted fibres rather than for the 
nucleation of slipped kinks. Such cracks were 
observed when kink-band evolution was inveSti- 
gated in fibre composites [11]. 

The total free Helmholtz energy of the slipped 
kink consists of t h e  calculated elastic energy 
together with the entropy associated With the 
defect and the energies of the disclination and 
dislocation cores. There are good reasons to 
believe [13] that the elastic energy represents 
the main part of the total energy, so that the 
other terms may be ignored when the energetics 
of processes due to the slipped kinks are con- 
sidered. 

4. Conclusions 
(1) A disclination-dislocation model has been 
proposed for the structure of kink bands in 
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oriented polymers and fibre composites. The 
proposed model is able to describe both simul- 
taneous chain or fibre bending and intermolecular 
slip in the band. 

(2) The mechanism has been considered for 
kink-band evolution by means of  a wedge dis- 
clination dipole movement. It has been shown 
that kink-band (dipole) motion is effected by 
ejecting special disclination-dislocation defects, 
the so-called slipped kinks. 

(3) The geometrical properties of  a slipped 
kink have been studied. It  has been discovered 
that such a defect consists of  two opposite-sign 
wedge disclination loops and two glide dislo- 
cation loops. Thus, characteristics of  discllnation 
and dislocation loops in the defect are unequi- 
vocally linked with one another. 

(4) The elastic energy of  a slipped kink has 
been calculated on the basis of  the self and inter- 
action energies o f  its components. The various 
limit cases of  kink energy with varying defect 
dimensions have been investigated. 

In addition, kink-band evolution in fibre 
composites can be accompanied by fibre fracture. 
This process takes place if it is energetically 
favourable to form a pair of  cracks in the fibre 
rather than to form a slipped kink. 

The disclination-dislocation model for kink- 
band structure and motion proposed in the present 
work suggests the possibility of  the theoretical 
description of  the deformation behaviour of  
plastically non-homogeneous materials. The main 
characteristics of  the deformation processes under 
investigation are: the critical applied stress, re, 
of  the kink-band nucleation and motion, the 
velocity, VKB, of  kink-band propagation through 
the material as a function of  the applied stress r 
and the tempeature T. It  is obvious that the 
relations between these characteristics and the 
structural properties of  the material are of  great 
value. For example, the critical applied stress, re, 
is determined by the number of  slipped kinks 
in the band formation from which kink-band 
development becomes energetically favourable. 
Likewise, the velocity, VKB, depends on the 
critical length, 2d e, o f  the slipped kink ejected by 
a disclination dipole (Fig. 4). For this to be 

achieved, the interaction between the slipped 
kink and the disclination dipole must be taken 
into consideration. The dependence of  the direc- 
tion of  the band motion on the structural and 
external parameters is also of  great interest. This 
direction is again determined from the standpoint 
of  the best energy balance for kink-band for- 
mation and propagation. 

All these questions and a comparison of  this 
model with the experimental data will be pre- 
sented in a subsequent publication. 
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